
Le nuove frontiere della genetica applicata all'analisi dei tumori per una cura personalizzata

Luigi Maria Terracciano

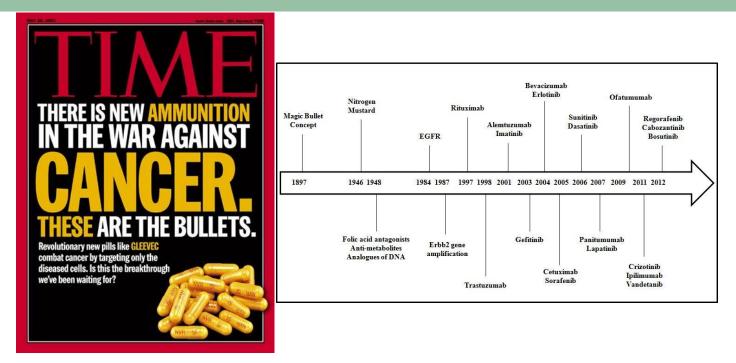
Head of Anatomic Pathology Lab Humanitas University Research Hospital Rozzano, Milan

Precision Medicine in Oncology

- Precision medicine in oncology aims to match individual patients with right treatment at the right time based on the patient's biologic and **molecular profiles**
- Prior to application almost all of targeted drugs require a so-called pre-therapeutic companion or complementary diagnostic to identify molecular alterations serving as targets
- A well-defined biomarker, often a characteristic genetic alteration or particular protein (over-) expression, has to be identified in the tumor tissue: predictive molecular pathology
- This is the basis of precision oncology !

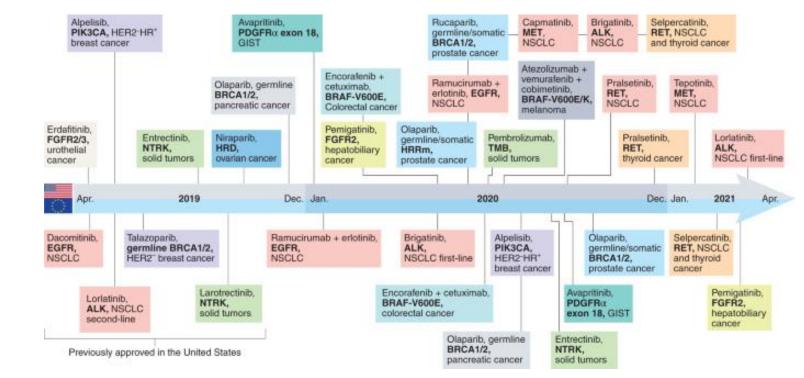
Late 1998: Begin of personalized oncology with the simultaneous regulatory approval of the anti HER2-targeted mAb Trastuzumab for the treatment of HER2-overexpressing breast cancer and the immunohistochemical-based diagnostic test Hercep Test (DAKO)

Slamon DJ, N Engl J Med, 2001; 344;783-792


HUMANITAS

Imatinib mesylate (Gleevec; Novartis,) a tyrosine kinase inhibitor, directed at BCR-ABL in chronic myeloid leukemia and c-Kit mutations in Gastrointestinal stromal tumors (GIST), strongly improved patient survival

O'Brien SG, N Engl J Med, 2003; 348:994-1004 Dagher R, Clin Cancer Res, 2002;8:3034-3038



HUMANITAS

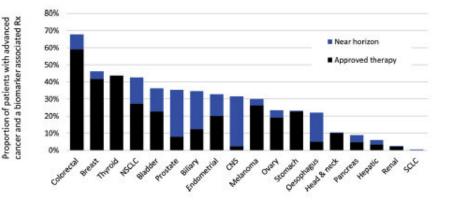
HUMANITAS

- Interest in these "drug-test" combinations has increased exponentially
- New drugs have entered clinical trials based on biomarkers profile
- The selection of anti-EGFR TKI in NSCLC and the use of antiEGFR mABs in CRC are firmly based on pretreatment <u>sequence determinations</u> in hot spot in the EGFR (NSCLC) and KRAS (CRC) genes

Genomic biomarker - driven drug approvals between April 2019 – April 2021

FDA

EMA


Mateo J, Nat Med, 2022

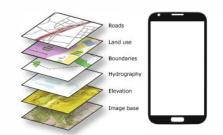
Proportion of patients with advanced cancer eligible for a biomarker associated therapy either currently or in near future

- Approved biomaker associated therapy
- Biomaker associated therapy on the near horizon
- No current biomarker associated therapy

Normanno N, Sem Cancer Biol, 2002

Enabling precision medicine

From traditional to advanced diagnostics


Classic

- IHC
- FISH
- PCR

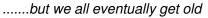
Advanced

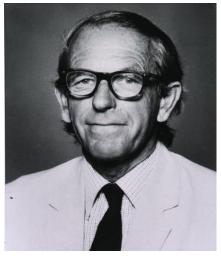
- Tissue-based Comprehensive Genomic Profiling
- Liquid biopsy Comprehensive Genomic Profiling

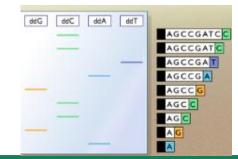
Personalised precision medicine approach

Match the therapy to the patient's genomic profile

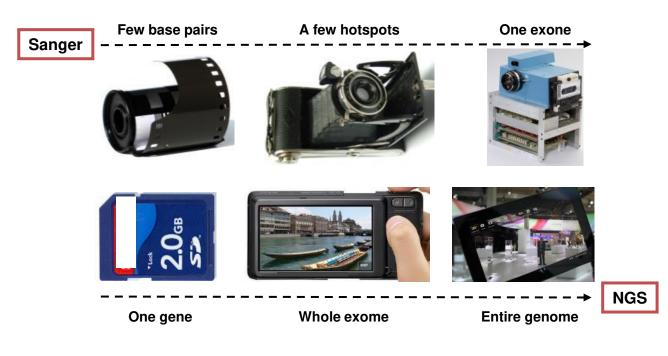
Adapted from: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease, NAS 2011


The very Past: Sanger Sequencing

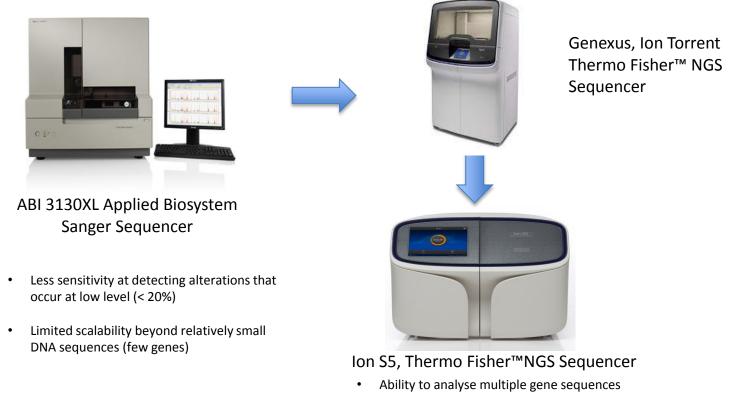

A glorious Sequencing Past


The young and bright.....

Point Wild-Mutation Type CTAG CTAG



HUMANITAS UNIVERSITY **HUMANITAS**

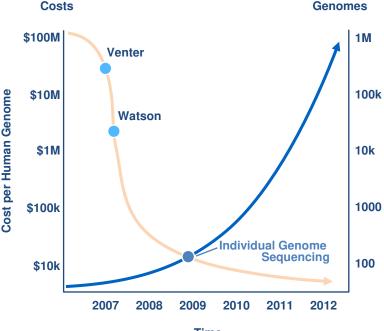

Next generation sequencing (NGS): What is that?

NGS is a kind of revolution


Institute of Anatomic Pathology, Humanitas University : NGS, since September 2021 for routine sequencing analyses

Why are we all talking about the NGS today?

Yeh it is all about money.....


Nov-18 \$0,02 \$ 1.000

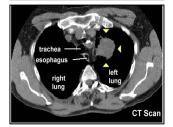
The evolution of molecular testing

Sequencing has moved from the research lab to the clinic

Time

1. Wadman, M. (2008) Nature. 452(7189):788.

2. Retrieved from: https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/ [Accessed September 2017]



Living in the Personalized Medicine Era - The Present

The concept in nutshell: a *linear* step by step process

Clinical S and Inves	Suspect
ſ	2
5	(
6	
11	•
trachea —	1

DRUG	TARGET	MANUFACTURER		
Erlotinib (Tarceva)	EGFR	Roche		
Dacomitinib/PF-00299804	EGFR	Pfizer		
Gefitinib (Iressa)	EGFR	AstraZeneca		
Afatinib (Gilotrif)	EGFR	Boehringer Ingelheim		
Rociletinib/CO-1686	EGFR T790M	Clovis		
AZD9291	EGFR T790M	AstraZeneca		
Icotinib	EGFR	Beta Pharma, Inc		
Necitumumab/IMC-11F8	EGFR (Mab)	Lilly		
Trastuzumab (Herceptin)	ERBB2	Roche		
T-DM1 (Kadcyla)	ERBB2	Roche		
MM-121	ERBB3	Merrimack		
Crizotinib (Xalkori)	ALK, ROS	Pfizer		
LDK378/ceritinib (Zykadia)	ALK	Novartis		
Alectinib/RO5424802/	ALK	Roche, Chugai		
PF-06463922	ALK, ROS	Pfizer		
RXDX-101	ALK, ROS, NTRK1	Ignyta		
Cabozantinib/XL184	MET, RET	Exelixis		
INC280	MET	Novartis, Incyte		
Vandetanib/ZD6474	RET	AstraZeneca		

Molecular Profiling of NSCLC

Covering all clinically relevant variants and being realistic

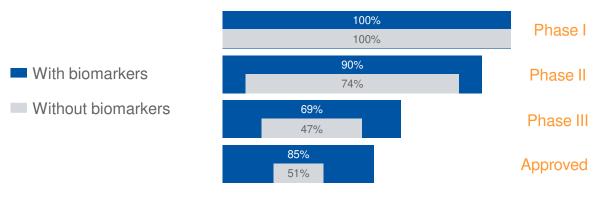
	Oncomine Solid Tumour DNA Kit	Oncomine Solid Tumour Fusion Transcript Kit					
Application	DNA somatic mutation detection (substitutions, insertions, deletions and inversions)	RNA fusion transcript detection					
Sample type	Extracted human DNA samples (including those from FFPE tissue)	Extracted human RNA samples (including those from FFPE tissue)					
Input required	10 ng or more of total DNA	10 ng or more of total RNA					
Genes	EGFR, ALK, ERBB2, ERBB4, FGFR1, FGFR2,	ALK, RET, ROS1, NTRK1					
	FGFR3, MET, DDR2, KRAS, PIK3CA, BRAF, AKT1, PTEN, NRAS, MAP2K1, STK11, NOTCH1, CTNNB1, SMAD4, FBXW7, TP53	Fusion variants described in the Cosmic database as related to lung cancer plus some additional variants identified by the OncoNetwork Consortium.					
Mutations	>1,800 cancer-related mutations as supported by the COSMIC database	NA					
Fusion transcripts	NA	>60 specific designs for cancer-relevant fusions plus imbalance assay for nontargeted <i>ALK</i> fusions					
What currently matters is there							
EGFR approved BRAF approved KRAS approved ERBB2 highly clinical r	ROS1 ti RET tra	ALK translocation/ceritinib/crizotinib: approved ROS1 translocation/crizotinib: approved RET translocation/selpercatenib/pralsetinib: approved NTRK1 translocation /entrectinib and larotrectinib					

Thermo Fisher

SCIENTIFIC

Modified from the web info of

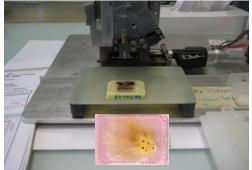
Why are we all talking about the NGS today?


Drug Development Success Rates

Phase I \rightarrow FDA approval

12.1% All other therapeutic areas

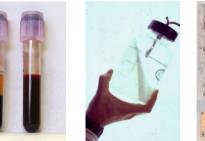
6.7% Oncology


Source:

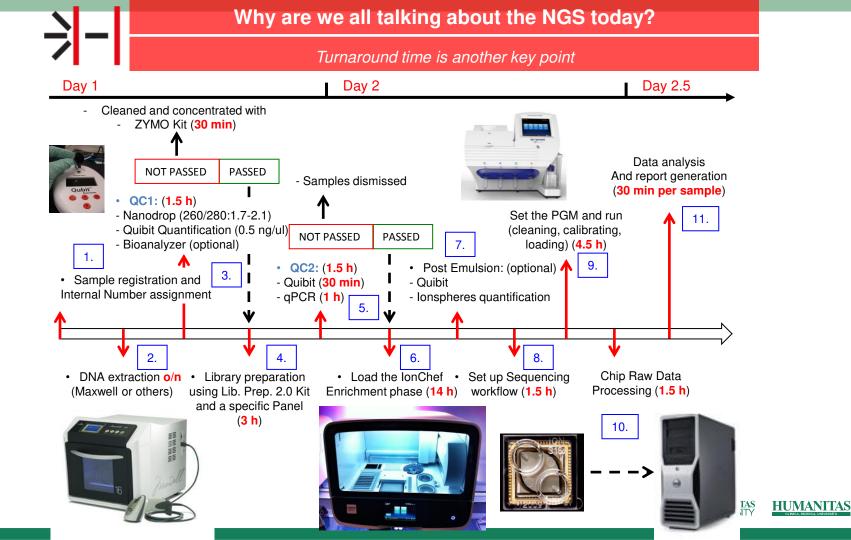
Thomas, D. Oncology Clinical Trials – Secrets of Success. 2012. http://www.biotech-now.org/bushess-and ERSITY

Tissue samples in Pathology


Punches



Microlaser Capture



Others

NGS: what do we really sequence?

No exome sequencing, but targeted hot spots !!

Oncomine Precision Assay 52 Genes

Intelligent NGS content includes SNV and indels, CNV and gene fusions

SNV: single nucleotide variation **Indels**: short insertions and deletions of bases

Thermo Fisher

Hot	spot genes	Copy number variants	Fusion drivers 23 genes RNA		
3	35 genes	19 genes			
	DNA				
AKT1	JAK1	ALK	ABL1		
ALK	JAK2	AR	ALK		
AR	JAK3	BRAF	AKT3		
BRAF	KIT	CCND1	AXL		
CDK4	KRAS	CDK4	BRAF		
CTNNB1	MAP2K1	CDK6	EGFR		
DDR2	MAP2K2	EGFR	ERBB2		
EGFR	MET	ERBB2	ERG		
ERBB2	MTOR	FGFR1	ETV1		
ERBB3	NRAS	FGFR2	ETV4		
ERBB4	PDGFRA	FGFR3	ETV5		
ESR1	PIK3CA	FGFR4	FGFR1		
FGFR2	RAF1	KIT	FGFR2		
FGFR3	RET	KRAS	FGFR3		
GNA11	ROS1	MET	MET		
GNAQ	SMO	MYC	NTRK1		
HRAS		MYCN	NTRK2		
IDH1		PDGFRA	NTRK3		
IDH2		PIK3CA	PDGFRA		
			PPARG		
			RAF1		
			RET		
			POS1		

NGS: what do we really sequence?

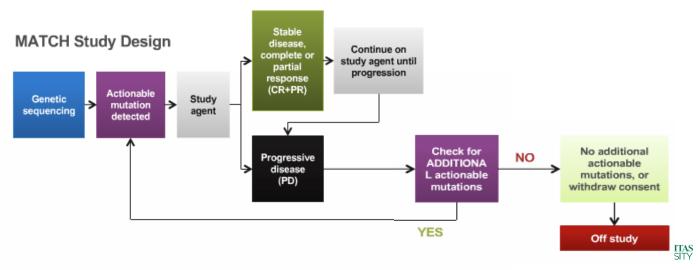
Targeted sequencing is dominating in diagnostic

Oncomine Comprehensive Assay v3

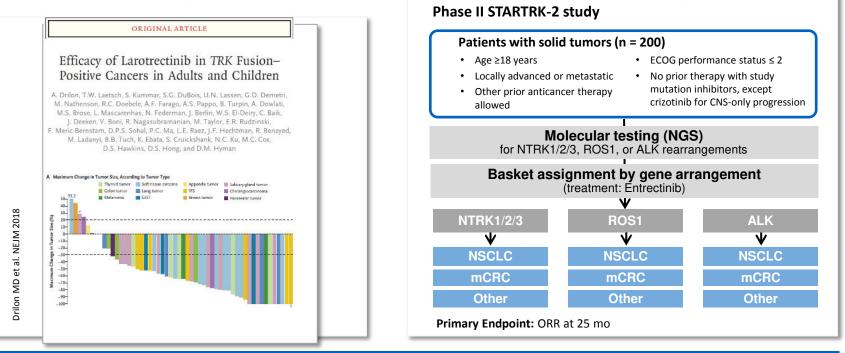
161 cancer driver genes

Hotspot genes			Full-length genes		Copy number genes		Gene fusions (inter- and intragenic)				
AKT1 ALK AR ARAF BRAF BTK CBL CDK4 CDK4 CHEK2 CSF1R CTNNB1 DDR2 EGFR ERBB1 ERBB2 ERBB2 ERBB3 ERBB4 ESR1 EZH2 FGFR1 FGFR2 FGFR3 FLT3	FOXL2 GATA2 GNA11 GNAQ GNAS HNF1A HRAS IDH1 IDH2 JAK1 JAK2 JAK3 KDR KIT KNSTRN KRAS MAGOH MAP2K1 MAP2K1 MAPK1 MAX MED12	MET MTOR MYD88 NFE2L2 NRAS PDGFRA PIK3CA PPP2R1A PTPN11 RAC1 RAF1 RAC1 RAF1 RET RHEB RHOA SF3B1 SMO SPOP SRC STAT3 U2AF1 XPO1	AKT2 AKT3 AXL CCND1 CDK6 ERCC2 FGFR4 H3F3A HIST1H3B MAP2K4 MDM4 MYC MYCN NTRK1 NTRK1 NTRK2 PDGFRB PIK3CB ROS1 SMAD4 TERT TOP1	ATM BAP1 BRCA1 BRCA2 CDKN2A FBXW7 MSH2 NF1 NF2 NOTCH1 PIK3R1 PTCH1 PTCH1 PTEN RB1 SMARCB1 STK11	TP53 TSC1 TSC2 ARID1A ATR ATRX CDK12 CDKN1B CDKN2B CHEK1 CREBBP FANCA FANCD2 FANCD2 FANCD2 FANCD2 FANCD2 FANCD2	MSH6 NBN NOTCH2 PALB2 PMS2 POLE RAD50 RAD510 RAD518 RAD510 RNF43 SETD2 SLX4 SMARCA4	AKT1 AR CCND1 CCNE1 CDK4 CDK6 EGFR ERBB2 FGFR1 FGFR2 FGFR3 FGFR4 FLT3 IGF1R KIT KRAS MDM2 MDM4 MET MYCL MYCL MYCL MYCL MYCN PDGFRA PIK3CA	PPARG TERT AKT2 AKT3 ALK AXL BRAF CCND2 CCND3 CDK2 CDKN28 ESR1 FGF19 FGF3 NTRK1 NTRK2 NTRK3 PDGFR8 PIK3C8 RICTOR TSC1 TSC1	ALK AXL BRAF EGFR ERBB2 ERG ETV1 ETV4 ETV5 FGFR1 FGFR2 FGFR3 NTRK1 NTRK3 PDGFRA PPARG RAF1	RET ROS1 AKT2 AR BRCA1 BRCA2 CDKN2A ERB84 ESR1 FGR FLT3 JAK2 KRAS MDM4 MET MYB MYBL1	NF1 NOTCH1 NOTCH4 NRG1 NTRK2 NUTM1 PDGFRB PIK3CA PRKACB PTEN RAD61B RB1 RELA RSP02 RSP03 TERT

The MATCH study


How NGS is shaping the evolution of the clinical trials?

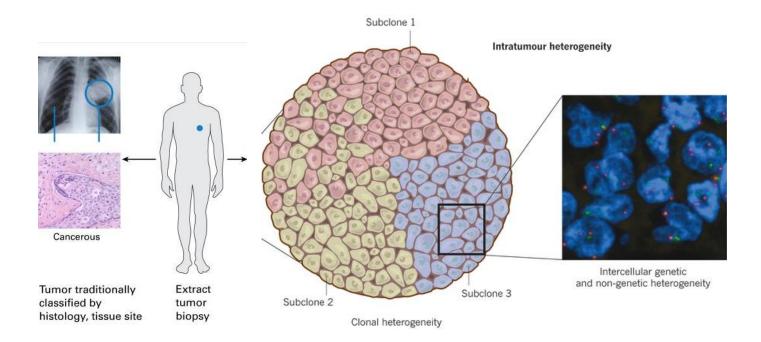
Molecularly Informed Clinical Trials Basket study example


HUMANITAS

- NCI's MATCH (Molecular Analysis for Therapy CHoice)
- Identify mutations/amplifications/translocations in patient tumor sample
 - eligibility determination
- Assign patient to relevant agent/regimen

Histology-agnostic development programs for new agents

For new targeted therapies with low prevalence in a single tumor-type


Small phase 2 basket studies for first approvals: will they become the new normal?

Drilon MD et al. NEJM 2018, STARTRK-2: https://clinicaltrials.gov/ct2/show/NCT02568267

UNIVERSITY

But......Tumors are heterogeneous

Does it impact on potential therapeutic outcome?

The causes and consequences of genetic heterogeneity in cancer evolution. Rebecca A. Burrell, Nicholas McGranahan, Jiri Bartek & Charles Swanton. *Nature 501, 338–345 (19 September 2013) doi:10.1038/nature12625.*

Why liquid biopsy?

Advantages but also Limitations, do not be fooled

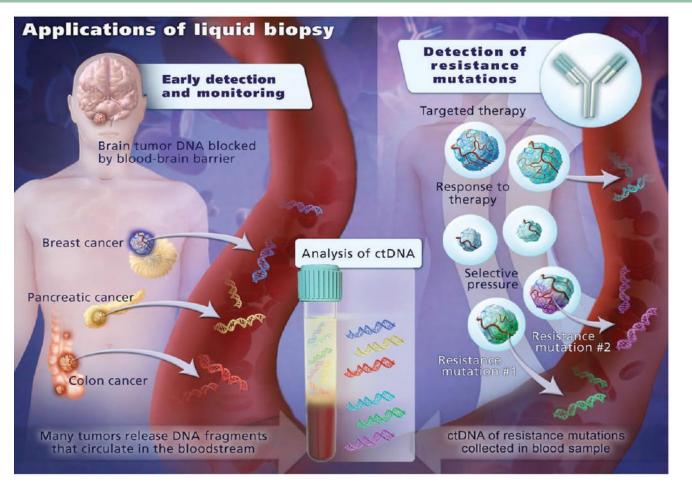
Liquid biopsy is a term that refers to sampling of non-solid biological tissues, most commonly including blood, but also saliva, urine, cerebrospinal fluid and other body fluids. In this seminar we will focus our attention on blood related applications.

Solid Tumor Samples

Challenges

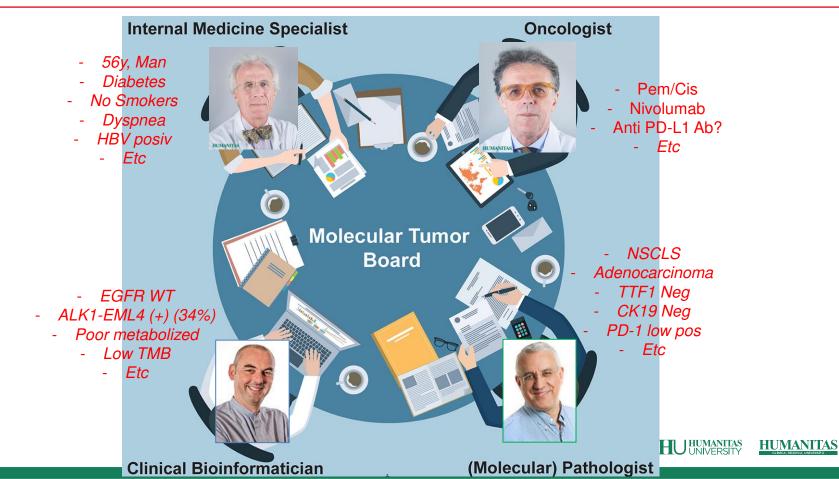
- Tissue sampling is invasive
- Tissue sampling may be limited
- Solid tumor sample may not be accessible
- Tissue samples do not capture tumor heterogeneity

Liquid Biopsy Samples



Advantages

- Less invasive samples can be taken at multiple time points
 - Less expensive and faster turnaround time
 - Better indicator of tumor heterogeneity


HUMANITAS

Potential to monitor both treatment and resistance

Where Multidisciplinary Interactions are Taking Place:

The Molecular Tumor Board